Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transparent Junctionless Electric-Double-Layer Transistors Gated by a Reinforced Chitosan-Based Biopolymer Electrolyte

Identifieur interne : 000067 ( Chine/Analysis ); précédent : 000066; suivant : 000068

Transparent Junctionless Electric-Double-Layer Transistors Gated by a Reinforced Chitosan-Based Biopolymer Electrolyte

Auteurs : RBID : Pascal:13-0323216

Descripteurs français

English descriptors

Abstract

Transparent junctionless organic-inorganic hybrid electric-double-layer thin-film transistors are demonstrated using a reinforced solution-processed chitosan-based biopolymer electrolyte as a dielectric layer. The specific feature of such device is that the channel and source/drain electrodes are realized using a thin indium tin oxide (ITO) film without any source/drain junction. A SiO2 film (∼5 nm)/chitosan organic-inorganic hybrid bilayer dielectric is found to be an efficient way to improve the stability and performance of the devices. Our results indicate that the transistor gated by organic-inorganic hybrid bilayer dielectric with a thin ITO channel (∼10 nm) exhibited a better performance with a lower subthreshold swing (84 mV/dec), a larger ON/OFF ratio (5.5 × 107), and a smaller bias-stressing threshold voltage shift (ΔVth = 0.13 V). A physical model based on energy diagram with 1-D Poisson equation is proposed to interpret the operating mechanism. These results clearly show that the proposed architecture can provide a new opportunity for the next-generation low-voltage low-cost device design.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0323216

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Transparent Junctionless Electric-Double-Layer Transistors Gated by a Reinforced Chitosan-Based Biopolymer Electrolyte</title>
<author>
<name>JIE JIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University</s1>
<s2>639798, Singapore</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>639798, Singapore</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QING WAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences</s1>
<s2>Ningbo 315201</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Ningbo 315201</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QING ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University</s1>
<s2>Singapore 639798</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 639798</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0323216</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0323216 INIST</idno>
<idno type="RBID">Pascal:13-0323216</idno>
<idno type="wicri:Area/Main/Corpus">000673</idno>
<idno type="wicri:Area/Main/Repository">000299</idno>
<idno type="wicri:Area/Chine/Extraction">000067</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9383</idno>
<title level="j" type="abbreviated">IEEE trans. electron devices</title>
<title level="j" type="main">I.E.E.E. transactions on electron devices</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bias voltage</term>
<term>Bilayers</term>
<term>Biopolymer</term>
<term>Chitosan</term>
<term>Cost lowering</term>
<term>Doped materials</term>
<term>Double layers</term>
<term>Electric stress</term>
<term>Electrolyte</term>
<term>Energy diagram</term>
<term>Growth from solution</term>
<term>Indium oxide</term>
<term>Low voltage</term>
<term>Multilayer coating</term>
<term>On off effect</term>
<term>Organic-inorganic hybrid materials</term>
<term>Performance evaluation</term>
<term>Poisson equation</term>
<term>Silicon oxides</term>
<term>Thin film transistor</term>
<term>Tin addition</term>
<term>Voltage threshold</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche double</term>
<term>Transistor couche mince</term>
<term>Electrolyte</term>
<term>Revêtement multicouche</term>
<term>Méthode en solution</term>
<term>Addition étain</term>
<term>Bicouche</term>
<term>Evaluation performance</term>
<term>Effet on off</term>
<term>Contrainte électrique</term>
<term>Tension polarisation</term>
<term>Seuil tension</term>
<term>Diagramme énergie</term>
<term>Equation Poisson</term>
<term>Basse tension</term>
<term>Diminution coût</term>
<term>Chitosane</term>
<term>Biopolymère</term>
<term>Matériau hybride organique minéral</term>
<term>Oxyde d'indium</term>
<term>Oxyde de silicium</term>
<term>Matériau dopé</term>
<term>ITO</term>
<term>SiO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transparent junctionless organic-inorganic hybrid electric-double-layer thin-film transistors are demonstrated using a reinforced solution-processed chitosan-based biopolymer electrolyte as a dielectric layer. The specific feature of such device is that the channel and source/drain electrodes are realized using a thin indium tin oxide (ITO) film without any source/drain junction. A SiO
<sub>2</sub>
film (∼5 nm)/chitosan organic-inorganic hybrid bilayer dielectric is found to be an efficient way to improve the stability and performance of the devices. Our results indicate that the transistor gated by organic-inorganic hybrid bilayer dielectric with a thin ITO channel (∼10 nm) exhibited a better performance with a lower subthreshold swing (84 mV/dec), a larger ON/OFF ratio (5.5 × 10
<sup>7</sup>
), and a smaller bias-stressing threshold voltage shift (ΔV
<sub>th</sub>
= 0.13 V). A physical model based on energy diagram with 1-D Poisson equation is proposed to interpret the operating mechanism. These results clearly show that the proposed architecture can provide a new opportunity for the next-generation low-voltage low-cost device design.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9383</s0>
</fA01>
<fA02 i1="01">
<s0>IETDAI</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. electron devices</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Transparent Junctionless Electric-Double-Layer Transistors Gated by a Reinforced Chitosan-Based Biopolymer Electrolyte</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JIE JIANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>QING WAN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>QING ZHANG</s1>
</fA11>
<fA14 i1="01">
<s1>NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University</s1>
<s2>639798, Singapore</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences</s1>
<s2>Ningbo 315201</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University</s1>
<s2>Singapore 639798</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1951-1957</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222F3</s2>
<s5>354000501982340230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0323216</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>I.E.E.E. transactions on electron devices</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Transparent junctionless organic-inorganic hybrid electric-double-layer thin-film transistors are demonstrated using a reinforced solution-processed chitosan-based biopolymer electrolyte as a dielectric layer. The specific feature of such device is that the channel and source/drain electrodes are realized using a thin indium tin oxide (ITO) film without any source/drain junction. A SiO
<sub>2</sub>
film (∼5 nm)/chitosan organic-inorganic hybrid bilayer dielectric is found to be an efficient way to improve the stability and performance of the devices. Our results indicate that the transistor gated by organic-inorganic hybrid bilayer dielectric with a thin ITO channel (∼10 nm) exhibited a better performance with a lower subthreshold swing (84 mV/dec), a larger ON/OFF ratio (5.5 × 10
<sup>7</sup>
), and a smaller bias-stressing threshold voltage shift (ΔV
<sub>th</sub>
= 0.13 V). A physical model based on energy diagram with 1-D Poisson equation is proposed to interpret the operating mechanism. These results clearly show that the proposed architecture can provide a new opportunity for the next-generation low-voltage low-cost device design.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche double</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Double layers</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transistor couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thin film transistor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transistor capa delgada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Electrolyte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electrolyte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Electrólito</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Revêtement multicouche</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Multilayer coating</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Revestimiento multicapa</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode en solution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth from solution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método en solución</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Effet on off</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>On off effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Efecto on off</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Contrainte électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electric stress</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tensión eléctrica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Tension polarisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Bias voltage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Voltage polarización</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Seuil tension</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Voltage threshold</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Umbral tensión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Diagramme énergie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Energy diagram</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Diagrama energía</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Equation Poisson</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Poisson equation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Ecuación Poisson</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Basse tension</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Low voltage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Baja tensión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Diminution coût</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Cost lowering</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Reducción costes</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Chitosane</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Chitosan</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Quitosano</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Biopolymère</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Biopolymer</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Biopolímero</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Matériau hybride organique minéral</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Organic-inorganic hybrid materials</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé IV-VI</s0>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>IV-VI compound</s0>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto IV-VI</s0>
<s5>17</s5>
</fC07>
<fN21>
<s1>301</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000067 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000067 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0323216
   |texte=   Transparent Junctionless Electric-Double-Layer Transistors Gated by a Reinforced Chitosan-Based Biopolymer Electrolyte
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024